Discrete Nonparametric Algorithms for Outlier Detection with Genomic Data
نویسندگان
چکیده
منابع مشابه
Discrete nonparametric algorithms for outlier detection with genomic data.
In high-throughput studies involving genetic data such as from gene expression microarrays, differential expression analysis between two or more experimental conditions has been a very common analytical task. Much of the resulting literature on multiple comparisons has paid relatively little attention to the choice of test statistic. In this article, we focus on the issue of choice of test stat...
متن کاملAlgorithms for Spatial Outlier Detection
A spatial outlier is a spatially referenced object whose non-spatial attribute values are significantly different from the values of its neighborhood. Identification of spatial outliers can lead to the discovery of unexpected, interesting, and useful spatial patterns for further analysis. One drawback of existing methods is that normal objects tend to be falsely detected as spatial outliers whe...
متن کاملOutlier Detection with Uncertain Data
In recent years, many new techniques have been developed for mining and managing uncertain data. This is because of the new ways of collecting data which has resulted in enormous amounts of inconsistent or missing data. Such data is often remodeled in the form of uncertain data. In this paper, we will examine the problem of outlier detection with uncertain data sets. The outlier detection probl...
متن کاملEvaluation of Data Mining Algorithms for Detection of Liver Disease
Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...
متن کاملOutlier detection for skewed data
Most outlier detection rules for multivariate data are based on the assumption of elliptical symmetry of the underlying distribution. We propose an outlier detection method which does not need the assumption of symmetry and does not rely on visual inspection. Our method is a generalization of the Stahel-Donoho outlyingness. The latter approach assigns to each observation a measure of outlyingne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biopharmaceutical Statistics
سال: 2010
ISSN: 1054-3406,1520-5711
DOI: 10.1080/10543400903572704